Correlation of the Energies of n-Bonds between Carbon and Other Elements with E.S.R. Hyperfine Coupling Constants

Christopher J. Rhodes

School of Chemistry, Thames Polytechnic, Wellington St., Woolwich, London SE18 6PF, U.K.

A linear correlation is found between C=A π -bond energies in compounds of the type H₂C=AR_n (or HC=AR_{n-1}) and $β$ -proton hyperfine coupling constants for the corresponding radicals H₃C-AR_n (or H₂C=AR_{n-1}): an empirical method is therefore available for either estimating π -bond energies from e.s.r. data or predicting hyperfine coupling constants from bond energy data.

We have found that a linear correlation $(r = 0.96)$ exists between $C=A$ π -bond energies (estimated as the difference $E(C=A) - E(C-A)$; A is an element) and the β -proton hyperfine coupling constants in the corresponding radicals H₃C-AR_n (or H₂C=AR_{n-1}). [We have taken the β -proton couplings of methyl groups as the maximum, on the basis of a Bcos² θ dependence *(i.e.* as the value of *B*, since $\theta = 0$ for maximum coupling), in order to relate them directly to couplings in radicals of the type $H_2C=A R_{n-1}$, where the geometry forces $\theta = 0$. The data used in the correlation are collated in Table 1.

Our qualitative interpretation of this is that as the formation of a π -bond requires overlap between a singly occupied C(2p) orbital and a singly occupied $A(np)$ orbital, so part of the hyperfine coupling mechanism for β -protons involves hyperconjugation, which, in the cases considered here, requires overlap between a doubly occupied carbon-based group orbital of π -symmetry and a single occupied $A(np)$ orbital: a relationship between these processes therefore appears reasonable. We attribute the intercept on the plot to the fact that our simple difference method does not separate the strengthening of the C-A a-bond due to the change in hybridisation between C(sp³)-C(sp³) and C(sp²)=C(sp²), which will therefore be included in the derived π -bond energies.

However, our main point is that this correlation may be used in a purely empirical way for predictive or interpretive purposes, by employing either equation (1) or (2) , as illustrated by the following examples which relate to some areas of current interest.

Figure 1. Plot of C=A π -bond energies for compounds $H_2C=AR_n$ (or HC=AR_{n-1}) against β -proton hyperfine couplings in the corresponding radicals $H_3C-\hat{A}R_n$ (or $H_2C=\hat{A}R_{n-1}$) ($\theta = 0$).

 $a \ 1 \ G = 10^{-4}$ T. b Taken from the sources in ref. 4, unless otherwise indicated. **c** Ref. *5.* **d** Ref. **2.** *e* Ref. **1. f** J. K. Kochi, *Adv. Free Radical Chem.,* **1975, 5, 189. g** Average of *cis* and *trans* couplings. h **S.** G. Hadley and D. H. Volman, *J. Am. Chem. SOC.,* **1967,89,1053. i I. S.** Ginns and M. C. R. Symons, *J. Chem. SOC., Dalton Trans.,* **1972,185.** j M. Iwasaki and K. Toriyama, *J. Am. Chem. SOC.,* **1978, 100, 1964.** L. D. Snow and **F.** Williams, *Chem. Phys. Lett.,* **1983, 100, 198.**

$$
E(C=A)/\text{kcal} = 33.95 + 0.456 \ a(\beta-H)_{\theta = 0}/G \qquad (1)
$$

$$
a(\beta - H)_{\theta = 0}/G = 2.19 E(C=A)/\text{kcal} - 74.45
$$
 (2)

(a) The estimate of the C=Si π -bond energy obtained by Walsh¹ fits quite well with the rest of our data, when plotted against the *B* value derived from $a(\beta-H)$ for the radical MeSi(SiMe₃₎₂,² which is believed to be nearly planar. Previ- ous estimates¹ of E_{π} (C=Si) appear to be too low on this basis. A value of 42 kcal mol⁻¹ is predicted by equation (1) .

(b) From the $a(\beta-H)$ value of 13.9 G for the Me₂P' radical,³ we estimate that the π -bond energy of a C=P bond should be **47** kcal mol-1.

(c) From our estimate of the π -bond energy of a C=S bond **(68** kcal mol-1),4 and using equation **(2),** we would predict that the β -proton coupling in the CH₃-S' radical should be 37 G. Unfortunately, this radical does not appear to have been studied by e.s.r.; however, a *B* value of **12.8** G has been estimated from a single crystal study⁵ of a radical RCH₂-S^{\cdot}. This is plotted on Figure 1 (point 1) and is seen to deviate appreciably from the straight line, indicating that the value is far too low.

In fact, our prediction of the β -proton coupling of the $CH₃-S'$ radical is in accord with our recent assignment for $R_2C(Mu) - S'$ radicals, studied by the muon spin rotation technique, which exhibit large muon hyperfine couplings in the range **40-50 G.6** (Temperature dependence studies indicate a weighting of conformations in which the muon is more strongly coupled than in a freely rotating case such as CH_3-S . A previous e.s.r. assignment⁷ for RCH_2-S in the liquid phase, with $a(\beta-H)$ ca. 9 G, also appears to be in error.

Received, 20th January *1988; Corn. 8100208H*

References

- **1** R. Walsh, *Acc. Chem. Res.,* **1981, 14,246,** and references therein.
- **2 J.** Cooper, A. Hudson, and R. A. Jackson, *Mol. Phys.,* **1972,** *23,* **209.**
- **3** B. **P.** Roberts and **K.** Singh, *J. Organomet. Chem.,* **1978, 159, 31.**
- **4** Bond energy data from J. March, 'Advanced Organic Chemistry: Reactions, Mechanisms and Structure,' **1968,** McGraw-Hill, New York; and **J.** E. Huheey, 'Inorganic Chemistry: Principles of Structure and Reactivity,' 2nd edn., Harper and Row, New York, **1978.**
- *5* Y. Kurita, *Bull. Chem. SOC. Jpn.,* **1967, 40, 94.**
- **6** C. **J.** Rhodes, M. C. R. Symons, and **E.** Roduner, *J. Chem. SOC., Chem. Commun.,* **1988, 3.**
- **7** W. Wolf, J. C. Kertesz, and W. C. Landgraf, J. *Magn. Reson.,* **1969, 1, 618.**